Fish oil feeding alters liver gene expressions to defend against PPARalpha activation and ROS production.

نویسندگان

  • Mayumi Takahashi
  • Nobuyo Tsuboyama-Kasaoka
  • Teruyo Nakatani
  • Masami Ishii
  • Shuichi Tsutsumi
  • Hiroyuki Aburatani
  • Osamu Ezaki
چکیده

Fish oil rich in n-3 polyunsaturated fatty acids has been shown to reduce the risk of cardiovascular diseases partly by reduction of blood triglyceride concentration. This favorable effect mainly results from the combined effects of inhibition of lipogenesis by decrease of SREBP-1 and stimulation of fatty acid oxidation by activation of peroxisome proliferator-activated receptor-alpha (PPARalpha) in liver. However, because fish oil is easily peroxidized to form hydroperoxides and increases oxidative stress, some defense mechanism(s) against oxidative stress might occur. To understand these complex effects of fish oil diet, the gene expression profile of mice liver was analyzed using high-density oligonucleotide arrays. High-fat diet (60% of total energy intake) as either safflower oil or fish oil (tuna) was given to mice. After 6 mo of feeding, expression levels of a total of 6,521 genes were analyzed. In fish oil diet compared with safflower oil diet, immune reaction-related genes, antioxidant genes (several glutathione transferases, uncoupling protein 2, and Mn-superoxide dismutase), and lipid catabolism-related genes upregulated, whereas cholesterol and fatty acid synthesis-related genes and 17-alpha hydroxylase/C17-20 lyase and sulfotransferases related to production of endogenous PPARalpha ligands and reactive oxygen species (ROS) downregulated markedly. Because upregulation of these antioxidant genes and downregulation of sulfotransferases were also observed in mice administered fenofibrate, altered gene expression related to antioxidant system observed in fish oil feeding was mediated directly and indirectly by PPARalpha activation. However, downregulation of 17-alpha hydroxylase/C17-20 lyase was not due to PPARalpha activation. These data indicate that fish oil feeding downregulated the endogenous PPARalpha-activation system and increased antioxidant gene expressions to protect against ROS excess.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A low fish oil inhibits SREBP-1 proteolytic cascade, while a high-fish-oil feeding decreases SREBP-1 mRNA in mice liver: relationship to anti-obesity.

Rodents fed fish oil showed less obesity with a reduction of triglyceride synthesis in liver, relative to other dietary oils, along with a decrease of mature form of sterol regulatory element binding protein-1 (SREBP-1) and activation of peroxisome proliferator-activated receptor alpha (PPARalpha). Decrease of mature SREBP-1 protein by fish oil feeding was due to either inhibition of SREBP-1 pr...

متن کامل

Amelioration of high fructose-induced metabolic derangements by activation of PPARalpha.

To elucidate molecular mechanisms of high fructose-induced metabolic derangements and the influence of peroxisome proliferator-activated receptor-alpha (PPARalpha) activation on them, we examined the expression of sterol regulatory element binding protein-1 (SREBP-1) and PPARalpha as well as its nuclear activation and target gene expressions in the liver of high fructose-fed rats with or withou...

متن کامل

Fish Oil Feeding Modulates the Expression of Hepatic MicroRNAs in a Western-Style Diet-Induced Nonalcoholic Fatty Liver Disease Rat Model

Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases worldwide. Recent studies have indicated that fish oil supplementation has benefits against NAFLD. Our previous transcriptomic study has validated the effect of fish oil supplementation on altering hepatic gene expression in a NAFLD rat model. In the current study, we examined the effects of fish oil on...

متن کامل

Evidence against the peroxisome proliferator-activated receptor alpha (PPARalpha) as the mediator for polyunsaturated fatty acid suppression of hepatic L-pyruvate kinase gene transcription.

The glycolytic enzyme, L-pyruvate kinase (L-PK), plays an important role in hepatic glucose metabolism. Insulin and glucose induce L-PK gene expression, while glucagon and polyunsaturated fatty acids (PUFA) inhibit L-PK gene expression. We have been interested in defining the PUFA regulation of L-PK. The cis-regulatory target for PUFA action includes an imperfect direct repeat (DR1) that binds ...

متن کامل

Chronic, in vivo, PPARalpha activation prevents lipid overload in rat liver induced by high fat feeding.

PURPOSE Peroxisome proliferator-activated receptors (PPAR's) are lipid sensors and when activated they modify gene expression of proteins regulating fatty acid (FA) metabolism in liver cells. The aim of the present study was to examine the in vivo effects of PPAR alpha and gamma activation combined with high fat diet (HFD) feeding on the lipid content and FA profile in the liver. MATERIAL/MET...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 282 2  شماره 

صفحات  -

تاریخ انتشار 2002